Search results
Results from the WOW.Com Content Network
Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...
An uncoupler or uncoupling agent is a molecule that disrupts oxidative phosphorylation in prokaryotes and mitochondria or photophosphorylation in chloroplasts and cyanobacteria by dissociating the reactions of ATP synthesis from the electron transport chain.
In enzymology, a phosphate-transporting ATPase (EC 3.6.3.27) is an enzyme that catalyzes the chemical reaction. ATP + H 2 O + phosphate (out) ADP + phosphate + phosphate (in). The 3 substrates of this enzyme are ATP, H 2 O, and phosphate, whereas its two products are ADP and phosphate.
ATP hydrolysis may widen the periplasmic opening and push the substrate towards the outer leaflet of the lipid bilayer. Hydrolysis of the second ATP molecule and release of P i separates the NBDs followed by restoration of the resting state, opening the chamber towards the cytoplasm for another cycle. [41] [44] [52] [55] [81] [85]
Adenosine triphosphate Adenosine diphosphate Adenosine monophosphate. ATPases (EC 3.6.1.3, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca 2+ + Mg 2+)-ATPase, HCO 3 −-ATPase, adenosine triphosphatase) are a class of enzymes that catalyze the decomposition of ATP into ADP ...
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.
ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the diagram).