enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiview orthographic projection - Wikipedia

    en.wikipedia.org/wiki/Multiview_orthographic...

    The side view is an isosceles trapezoid. In first-angle projection, the front view is pushed back to the rear wall, and the right side view is pushed to the left wall, so the first-angle symbol shows the trapezoid with its shortest side away from the circles.

  3. Concave polygon - Wikipedia

    en.wikipedia.org/wiki/Concave_polygon

    It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polygons as possible is described by Chazelle & Dobkin (1985). [5] A triangle can never be concave, but there exist concave polygons with n sides for any n > 3.

  4. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    A regular triangle, heptagon, and 42-gon can completely fill a plane vertex. However, there is no tiling of the plane with only these polygons, because there is no way to fit one of them onto the third side of the triangle without leaving a gap or creating an overlap. In the hyperbolic plane, tilings by regular heptagons are possible. There are ...

  5. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    A polygon ear. One way to triangulate a simple polygon is based on the two ears theorem, as the fact that any simple polygon with at least 4 vertices without holes has at least two "ears", which are triangles with two sides being the edges of the polygon and the third one completely inside it. [5]

  6. Fan triangulation - Wikipedia

    en.wikipedia.org/wiki/Fan_Triangulation

    Fan triangulation of a convex polygon Fan triangulation of a concave polygon with a unique concave vertex. In computational geometry, a fan triangulation is a simple way to triangulate a polygon by choosing a vertex and drawing edges to all of the other vertices of the polygon.

  7. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    It is possible to divide an equilateral triangle into three congruent non-convex pentagons, meeting at the center of the triangle, and to tile the plane with the resulting three-pentagon unit. [21] A similar method can be used to subdivide squares into four congruent non-convex pentagons, or regular hexagons into six congruent non-convex ...

  8. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    Some regular polygons are easy to construct with compass and straightedge; others are not. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [1]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  9. Heptagonal triangle - Wikipedia

    en.wikipedia.org/wiki/Heptagonal_triangle

    The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13