enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the higher-order derivative test. Let f be a real-valued, sufficiently differentiable function on an interval I ⊂ R {\displaystyle I\subset \mathbb {R} } , let c ∈ I {\displaystyle c\in I} , and let n ≥ 1 {\displaystyle n\geq 1} be a ...

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  7. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    However, Leibniz did use his d notation as we would today use operators, namely he would write a second derivative as ddy and a third derivative as dddy. In 1695 Leibniz started to write d 2 ⋅x and d 3 ⋅x for ddx and dddx respectively, but l'Hôpital, in his textbook on calculus written around the same time, used Leibniz's original forms. [18]

  8. Third derivative - Wikipedia

    en.wikipedia.org/wiki/Third_derivative

    In calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function y = f ( x ) {\displaystyle y=f(x)} can be denoted by

  9. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f: