Search results
Results from the WOW.Com Content Network
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.
The lanthanide contraction, i.e. the reduction in size of the Ln 3+ ion from La 3+ (103 pm) to Lu 3+ (86.1 pm), is often explained by the poor shielding of the 5s and 5p electrons by the 4f electrons. [18] Lanthanide oxides: clockwise from top center: praseodymium, cerium, lanthanum, neodymium, samarium and gadolinium.
Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is ...
The reductions in atomic size due to the interjection of the d- and f-blocks are referred to as, respectively, the 'scandide' or 'd-block contraction', [n 3] and the 'lanthanide contraction'. [13] Relativistic effects also "increase the binding energy", and hence ionisation energy, of the electrons in "the 6s shell in gold and mercury, and the ...
This is an effect of the lanthanide contraction: the expected increase of atomic radius from the 4d to the 5d elements is wiped out by the insertion of the 4f elements before. Titanium, being smaller, is distinct from these two: its oxide is less basic than those of zirconium and hafnium, and its aqueous chemistry is more hydrolyzed. [ 28 ]
A direct consequence is that, during the formation of coordination bonds, the REE behaviour gradually changes along the series. Furthermore, the lanthanide contraction causes the ionic radius of Ho 3+ (0.901 Å) to be almost identical to that of Y 3+ (0.9 Å), justifying the inclusion of the latter among the REE.
The lanthanide contraction only partially accounts for this anomaly. [11] Because the 6s 2 orbital is contracted by relativistic effects and may therefore only weakly contribute to any chemical bonding, Hg–Hg bonding must be mostly the result of van der Waals forces. [11] [13] [14] Mercury gas is mostly monatomic, Hg(g).
This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why valence-shell electrons are more easily removed from the atom. Additionally, there is also a shielding effect that occurs between sublevels within the same principal energy level. An electron in the s-sublevel ...