enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oppermann's conjecture - Wikipedia

    en.wikipedia.org/wiki/Oppermann's_conjecture

    and at least another prime between x 2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. [3] That is: π (x 2 − x) < π (x 2) < π (x 2 + x) for x > 1. with π (x) being the number of prime numbers less than or equal to x.

  3. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [ 1 ] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.

  4. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34]

  5. Off-by-one error - Wikipedia

    en.wikipedia.org/wiki/Off-by-one_error

    The correct number of sections for a fence is n − 1 if the fence is a free-standing line segment bounded by a post at each of its ends (e.g., a fence between two passageway gaps), n if the fence forms one complete, free-standing loop (e.g., enclosure accessible by surmounting, such as a boxing ring), or n + 1 if posts do not occur at the ends ...

  6. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...

  7. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  8. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Consequently, a prime number divides at most one prime-exponent Mersenne number. [25] That is, the set of pernicious Mersenne numbers is pairwise coprime. If p and 2p + 1 are both prime (meaning that p is a Sophie Germain prime), and p is congruent to 3 (mod 4), then 2p + 1 divides 2 p − 1. [26]

  9. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.