Search results
Results from the WOW.Com Content Network
An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...
Critical data studies is the exploration of and engagement with social, cultural, and ethical challenges that arise when working with big data. It is through various unique perspectives and taking a critical approach that this form of study can be practiced. [1]
The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.
This data mining method has been explored in different fields including disease diagnosis, market basket analysis, retail industry, higher education, and financial analysis. In retail, affinity analysis is used to perform market basket analysis, in which retailers seek to understand the purchase behavior of customers.
Data-driven pattern mining and knowledge discovery in databases [3] face such challenges that the discovered outputs are often not actionable. In the era of big data, how to effectively discover actionable insights from complex data and environment is critical. A significant paradigm shift is the evolution from data-driven pattern mining to ...
The speed at which the data is generated and processed to meet the demands and challenges that lie in the path of growth and development. Big data is often available in real-time. Compared to small data, big data is produced more continually. Two kinds of velocity related to big data are the frequency of generation and the frequency of handling ...
While the analysis of educational data is not itself a new practice, recent advances in educational technology, including the increase in computing power and the ability to log fine-grained data about students' use of a computer-based learning environment, have led to an increased interest in developing techniques for analyzing the large amounts of data generated in educational settings.
To data and structure mine XML data of any form, at least two extensions are required to conventional data mining. These are the ability to associate an XPath statement with any data pattern and sub statements with each data node in the data pattern, and the ability to mine the presence and count of any node or set of nodes within the document.