Search results
Results from the WOW.Com Content Network
The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.
In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...
In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem. In the scenario method, [ 1 ] [ 2 ] [ 3 ] a solution is obtained by only looking at a random sample of constraints ( heuristic approach) called scenarios and a deeply-grounded theory tells the user how “robust ...
Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.
For instance, from the example above in economics, if the maximal utility of two goods is achieved when the quantity of goods x and y are (−2, 5), and the utility is subject to the constraint x and y are greater than or equal to 0 (one cannot consume a negative quantity of goods) as is usually the case, then the actual solution to the problem ...
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...
For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).
By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast. A nice property is that the number of computations is independent of the number of parameters for which you want the gradient. The adjoint method is derived from the dual problem [4] and is used e.g. in the Landweber iteration ...