Search results
Results from the WOW.Com Content Network
According to the definition of a parabola as a conic section, the boundary of this pink cross-section EPD is a parabola. A cross-section perpendicular to the axis of the cone passes through the vertex P of the parabola. This cross-section is circular, but appears elliptical when viewed obliquely, as is shown in the diagram.
Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
The first (greatest) term of a polynomial p for this ordering and the corresponding monomial and coefficient are respectively called the leading term, leading monomial and leading coefficient and denoted, in this article, lt(p), lm(p) and lc(p). Most polynomial operations related to Gröbner bases involve the leading terms.
The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.
The name "parabolic" is used because the assumption on the coefficients is the same as the condition for the analytic geometry equation + + + + + = to define a planar parabola. The basic example of a parabolic PDE is the one-dimensional heat equation =,
The leading entry (sometimes leading coefficient [citation needed]) of a row in a matrix is the first nonzero entry in that row. So, for example, in the matrix ( 1 2 0 6 0 2 9 4 0 0 0 4 0 0 0 0 ) , {\displaystyle {\begin{pmatrix}1&2&0&6\\0&2&9&4\\0&0&0&4\\0&0&0&0\end{pmatrix}},} the leading coefficient of the first row is 1; that of the second ...
The choice is arbitrary, and may depend on a further convention, which is commonly that the leading coefficient of the primitive part be positive. For example, the content of − 12 x 3 + 30 x − 20 {\displaystyle -12x^{3}+30x-20} may be either 2 or −2, since 2 is the greatest common divisor of −12, 30, and −20.
In number theory, the Stark conjectures, introduced by Stark (1971, 1975, 1976, 1980) and later expanded by Tate (), give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields.