enow.com Web Search

  1. Ad

    related to: joint probability functions examples

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations.

  4. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    For example, it may be used, when joint probability density function between two random variables is known, the copula density function is known, and one of the two marginal functions are known, then, the other marginal function can be calculated, or

  5. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .

  6. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.

  7. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  8. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    Probability density functions of the order statistics for a sample of size n = 5 from an exponential distribution with unit scale parameter. In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. [1]

  9. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels

  1. Ad

    related to: joint probability functions examples