Search results
Results from the WOW.Com Content Network
Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to ...
A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1] Glucose-6-phosphate can then progress through glycolysis. [1]
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Glucose is a sugar with the molecular formula C 6 H 12 O 6.It is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.
Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1]
The cooperation between Photosystems I and II creates an electron and proton flow from H 2 O to NADP +, producing NADPH needed for glucose synthesis. This pathway is called the 'Z-scheme' because the redox diagram from H 2 O to NADP + via P680 and P700 resembles the letter Z. [11]