Search results
Results from the WOW.Com Content Network
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.
In essence, these requirements are a test of how well a bit sequence: has zeros and ones equally often; after a sequence of n zeros (or ones), the next bit a one (or zero) with probability one-half; and any selected subsequence contains no information about the next element(s) in the sequence.
A generalization of the self-descriptive numbers, called the autobiographical numbers, allow fewer digits than the base, as long as the digits that are included in the number suffice to completely describe it. e.g. in base 10, 3211000 has 3 zeros, 2 ones, 1 two, and 1 three. Note that this depends on being allowed to include as many trailing ...
Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green).
In these three, sequence types (C arrays, Java arrays and lists, and Lisp lists and vectors) are indexed beginning with the zero subscript. Particularly in C, where arrays are closely tied to pointer arithmetic, this makes for a simpler implementation: the subscript refers to an offset from the starting position of an array, so the first ...
An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that 1 / x = a. We can rephrase that as finding the zero of f(x) = 1 / x − a. We have f ′ (x) = − 1 / x 2 . Newton's ...