Search results
Results from the WOW.Com Content Network
Texture is seen in almost all engineered materials, and can have a great influence on materials properties. The texture forms in materials during thermo-mechanical processes, for example during production processes e.g. rolling. Consequently, the rolling process is often followed by a heat treatment to reduce the amount of unwanted texture.
The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in ...
Three examples of vector fields. From left to right: a field with a source, a field with a sink, a field without either. In the physical sciences , engineering and mathematics , sources and sinks is an analogy used to describe properties of vector fields .
In LIC, discrete numerical line integration is performed along the field lines (curves) of the vector field on a uniform grid. The integral operation is a convolution of a filter kernel and an input texture, often white noise. [1] In signal processing, this process is known as a discrete convolution. [3]
Coquille board, also known as stipple board, is a type of drawing paper with a pebbled texture. The grain is impressed into the uncoated paper during manufacture. [ 1 ] Used with a soft lithographic crayon or carbon pencil , coquille produces a shading effect similar to hand stippling in a fraction of the time. [ 2 ]
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
vector Jounce (or snap) s →: Change of jerk per unit time: the fourth time derivative of position m/s 4: L T −4: vector Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the strength of the magnetic field tesla (T = Wb/m 2) M T −2 I −1: pseudovector field Magnetic ...