enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hauora - Wikipedia

    en.wikipedia.org/wiki/Hauora

    All four dimensions are necessary for strength and stability. [3] Other models of hauora have been designed. For example, in 1997, Lewis Moeau, iwi leader and later cultural advisor for the Prime Minister suggested that a fifth dimension, whenua (connection with the land), be added to the original model. [4]

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    This realization of a combinatorial graph as a topological space is sometimes called a topological graph. 3-regular graphs can be considered as generic 1-dimensional CW complexes. Specifically, if X is a 1-dimensional CW complex, the attaching map for a 1-cell is a map from a two-point space to X, : {,}.

  4. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content [5] within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest.

  5. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

  6. 16-cell - Wikipedia

    en.wikipedia.org/wiki/16-cell

    The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...

  7. Schlegel diagram - Wikipedia

    en.wikipedia.org/wiki/Schlegel_diagram

    Sommerville also considers the case of a simplex in four dimensions: [2] "The Schlegel diagram of simplex in S 4 is a tetrahedron divided into four tetrahedra." More generally, a polytope in n-dimensions has a Schlegel diagram constructed by a perspective projection viewed from a point outside of the polytope, above the center of a facet.

  8. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.

  9. Line graph of a hypergraph - Wikipedia

    en.wikipedia.org/wiki/Line_graph_of_a_hypergraph

    Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some ...