enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

  3. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    The Echo State Network (ESN) [4] belongs to the Recurrent Neural Network (RNN) family and provide their architecture and supervised learning principle. Unlike Feedforward Neural Networks, Recurrent Neural Networks are dynamic systems and not functions.

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on. The Nth order RNN connects the first and last node.

  5. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Structure of RNN and BRNN [1] The principle of BRNN is to split the neurons of a regular RNN into two directions, one for positive time direction (forward states), and another for negative time direction (backward states). Those two states' output are not connected to inputs of the opposite direction states.

  6. Random neural network - Wikipedia

    en.wikipedia.org/wiki/Random_neural_network

    The RNN is a recurrent model, i.e. a neural network that is allowed to have complex feedback loops. [2] A highly energy-efficient implementation of random neural networks was demonstrated by Krishna Palem et al. using the Probabilistic CMOS or PCMOS technology and was shown to be c. 226–300 times more efficient in terms of Energy-Performance ...

  7. Bidirectional associative memory - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_associative...

    The memory or storage capacity of BAM may be given as (,), where "" is the number of units in the X layer and "" is the number of units in the Y layer. [3]The internal matrix has n x p independent degrees of freedom, where n is the dimension of the first vector (6 in this example) and p is the dimension of the second vector (4).

  8. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    This page was last edited on 12 November 2024, at 19:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Radial basis function network - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_network

    The parameters , , and are determined in a manner that optimizes the fit between and the data. Two unnormalized radial basis functions in one input dimension. The basis function centers are located at c 1 = 0.75 {\displaystyle c_{1}=0.75} and c 2 = 3.25 {\displaystyle c_{2}=3.25} .