enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.

  3. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Let I denote the identity matrix and let J denote the matrix of ones, both matrices of order v. The adjacency matrix A of a strongly regular graph satisfies two equations. First: = =, which is a restatement of the regularity requirement. This shows that k is an eigenvalue of the adjacency matrix with the all-ones eigenvector.

  4. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of ...

  5. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 respectively. [12] The Laplacian matrix of a complete bipartite graph K m,n has eigenvalues n + m, n, m, and 0; with multiplicity 1, m − 1, n − 1 and 1 respectively. A complete bipartite graph K m,n has m ...

  6. Expander code - Wikipedia

    en.wikipedia.org/wiki/Expander_code

    In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).

  7. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    More generally, a generalized adjacency matrix is any symmetric matrix of real numbers with the same pattern of nonzeros off the diagonal (the diagonal elements may be any real numbers). The minimum rank of G {\displaystyle G} is defined as the smallest rank of any generalized adjacency matrix of the graph; it is denoted by mr ⁡ ( G ...

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    list 1. An adjacency list is a computer representation of graphs for use in graph algorithms. 2. List coloring is a variation of graph coloring in which each vertex has a list of available colors. local A local property of a graph is a property that is determined only by the neighbourhoods of the vertices in the graph. For instance, a graph is ...

  9. Expander graph - Wikipedia

    en.wikipedia.org/wiki/Expander_graph

    When G is d-regular, meaning each vertex is of degree d, there is a relationship between the isoperimetric constant h(G) and the gap d − λ 2 in the spectrum of the adjacency operator of G. By standard spectral graph theory, the trivial eigenvalue of the adjacency operator of a d-regular graph is λ 1 = d and the first non-trivial eigenvalue ...