enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    The masses of the proton and neutron are similar: for the proton it is 1.6726 × 10 −27 kg (938.27 MeV/c 2), while for the neutron it is 1.6749 × 10 −27 kg (939.57 MeV/c 2); the neutron is roughly 0.13% heavier. The similarity in mass can be explained roughly by the slight difference in masses of up quarks and down quarks composing the ...

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Neutrons are required for the stability of nuclei, with the exception of the single-proton hydrogen nucleus. Neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes.

  4. Nuclear matter - Wikipedia

    en.wikipedia.org/wiki/Nuclear_matter

    Nuclear matter is an idealized system of interacting nucleons (protons and neutrons) that exists in several phases of exotic matter that, as of yet, are not fully established. [2] It is not matter in an atomic nucleus, but a hypothetical substance consisting of a huge number of protons and neutrons held together by only nuclear forces and no ...

  5. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115. Mass excess should not be confused with mass defect which is the difference between the mass of an atom and its constituent particles (namely protons, neutrons and electrons). There are two reasons for mass ...

  6. Nuclear structure - Wikipedia

    en.wikipedia.org/wiki/Nuclear_structure

    Difference between experimental binding energies and the liquid drop model prediction as a function of neutron number for Z>7. Systematic measurements of the binding energy of atomic nuclei show systematic deviations with respect to those estimated from the liquid drop model. In particular, some nuclei having certain values for the number of ...

  7. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  8. Subatomic particle - Wikipedia

    en.wikipedia.org/wiki/Subatomic_particle

    The mass number of an isotope is the total number of nucleons (neutrons and protons collectively). Chemistry concerns itself with how electron sharing binds atoms into structures such as crystals and molecules. The subatomic particles considered important in the understanding of chemistry are the electron, the proton, and the neutron.

  9. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    If the nucleus is assumed to be spherically symmetric, an approximate relationship between nuclear radius and mass number arises above A=40 from the formula R=R o A 1/3 with R o = 1.2 ± 0.2 fm. [6] R is the predicted spherical nuclear radius, A is the mass number, and R o is a constant determined by experimental