Search results
Results from the WOW.Com Content Network
In recent times the catalytic oxidation of cyclohexene by (immobilized) metalloporphyrin complexes has been found to be an efficient way. [7] [8] In laboratory, cyclohexene oxide can also be prepared by reacting cyclohexene with magnesium monoperoxyphthalate (MMPP) in a mixture of isopropanol and water as solvent at room temperature. [9]
Benzene is converted to cyclohexylbenzene by acid-catalyzed alkylation with cyclohexene. [6] Cyclohexylbenzene is a precursor to both phenol and cyclohexanone. [7] Hydration of cyclohexene gives cyclohexanol, which can be dehydrogenated to give cyclohexanone, a precursor to caprolactam. [8] The oxidative cleavage of cyclohexene gives adipic acid.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Aliquat 336 is used as a phase transfer catalyst, [2] including in the catalytic oxidation of cyclohexene to 1,6-hexanedioic acid. [3] This reaction is an example of green chemistry, as it is more environmentally friendly than the traditional method of oxidizing cyclohexanol or cyclohexanone with nitric acid or potassium permanganate, which produce hazardous wastes.
The white smoke-like vapor produced by the reaction is a mixture of carbon dioxide gas and water vapor. Since the reaction is highly exothermic, initial sparking occurs, followed by a lilac- or pink-colored flame. [9] When energy or heat is added to electrons, their energy level increases to an excited state.
Potassium permanganate is often used as the oxidant for dihydroxylation; however, due to its poor solubility in organic solvent, a phase-transfer catalyst (such as benzyltriethylammonium chloride, TEBACl) is also added to increase the number of substrates for dihydroxylation. [18] Mild conditions are required to avoid over-oxidation.
The reagent is an alkaline solution of potassium permanganate. Reaction with double or triple bonds (R 2 C=CR 2 or R−C≡C−R) causes the color to fade from purplish-pink to brown. Aldehydes and formic acid (and formates) also give a positive test. [43] The test is antiquated. Baeyer's reagent reaction
Oxidation of 1-methylcyclohexene catalyzed by cytochrome P450 yields a 2:1 mixture of hydroxylation to epoxidation products. [4] The stereochemistry of hydroformylation has been examined using 1-methylcyclohexene. The main product has the formyl group on the less substituted alkene-carbon, trans with respect to the methyl substituent. [5]