Search results
Results from the WOW.Com Content Network
Graph of a sine wave's voltage vs. time (in degrees), showing RMS, peak (PK), and peak-to-peak (PP) voltages. If the waveform is a pure sine wave, the relationships between amplitudes (peak-to-peak, peak) and RMS are fixed and known, as they are for any continuous periodic wave. However, this is not true for an arbitrary waveform, which may not ...
The peak-to-average power ratio (PAPR) is the peak amplitude squared (giving the peak power) divided by the RMS value squared (giving the average power). [1] It is the square of the crest factor. When expressed in decibels, crest factor and PAPR are equivalent, due to the way decibels are calculated for power ratios vs amplitude ratios.
A potential for ambiguity exists when assigning a level on the dBFS scale to a waveform rather than to a specific amplitude, because some engineers follow the mathematical definition of RMS, which for sinusoidal signals is 3 dB below the peak value, while others choose the reference level so that RMS and peak measurements of a sine wave produce ...
Voltage vs. time of sine waves at reference and line levels, with V RMS, V PK, and V PP marked for the +4dBu line level. A line level describes a line's nominal signal level as a ratio, expressed in decibels, against a standard reference voltage. The nominal level and the reference voltage against which it is expressed depend on the line level ...
Various properties of ripple voltage may be important depending on application: the equation of the ripple for Fourier analysis to determine the constituent harmonics; the peak (usually peak-to-peak) value of the voltage; the root mean square (RMS) value of the voltage which is a component of power transmitted; the ripple factor γ, the ratio ...
RMS voltage in blue, peak power in red, average power in green. Continuous average sine wave power ratings are a staple of performance specifications for audio amplifiers and, sometimes, loudspeakers. As described above, the term average power refers to the average value of the instantaneous power waveform over time.
The RMS value of an alternating current is also known as its heating value, as it is a voltage which is equivalent to the direct current value that would be required to get the same heating effect. For example, if 120 V AC RMS is applied to a resistive heating element it would heat up by exactly the same amount as if 120 V DC were applied.
The squaring in RMS and the absolute value in ARV mean that both the values and the form factor are independent of the wave function's sign (and thus, the electrical signal's direction) at any point. For this reason, the form factor is the same for a direction-changing wave with a regular average of 0 and its fully rectified version.