Search results
Results from the WOW.Com Content Network
Quantitative uses of the terms uncertainty and risk are fairly consistent among fields such as probability theory, actuarial science, and information theory. Some also create new terms without substantially changing the definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in information theory ...
Accuracy is sometimes also viewed as a micro metric, to underline that it tends to be greatly affected by the particular class prevalence in a dataset and the classifier's biases. [14] Furthermore, it is also called top-1 accuracy to distinguish it from top-5 accuracy, common in convolutional neural network evaluation. To evaluate top-5 ...
An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational acceleration of 9.8 m/s² ignores the effects of air resistance, but the air resistance for the object could be measured and incorporated into the experiment to ...
More formally, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the product of the accuracy of certain related pairs of measurements on a quantum system, such as position, x, and momentum, p. [1] Such paired-variables are known as complementary variables or canonically conjugate variables.
For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the ...
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Precision tests of QED have been performed in low-energy atomic physics experiments, high-energy collider experiments, and condensed matter systems. The value of α is obtained in each of these experiments by fitting an experimental measurement to a theoretical expression (including higher-order radiative corrections) that includes α as a parameter.