Search results
Results from the WOW.Com Content Network
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. [5] A set may be finite or infinite, depending whether the number ...
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate.
Pages in category "Operations on sets" The following 11 pages are in this category, out of 11 total. ... Saturated set; List of set identities and relations;
In discrete optimization, a special ordered set (SOS) is an ordered set of variables used as an additional way to specify integrality conditions in an optimization model. . Special order sets are basically a device or tool used in branch and bound methods for branching on sets of variables, rather than individual variables, as in ordinary mixed integer programm
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Just as arithmetic features binary operations on numbers, set theory features binary operations on sets. [9] The following is a partial list of them: Union of the sets A and B, denoted A ∪ B, is the set of all objects that are a member of A, or B, or both. [10] For example, the union of {1, 2, 3} and {2, 3, 4} is the set {1, 2, 3, 4}.