Search results
Results from the WOW.Com Content Network
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution.
Asymptotic normality, in mathematics and statistics; Complete normality or normal space, Log-normality, in probability theory; Normality (category theory) Normality (statistics) or normal distribution, in probability theory; Normality tests, used to determine if a data set is well-modeled by a normal distribution
Conversely, if is a normal deviate with parameters and , then this distribution can be re-scaled and shifted via the formula = / to convert it to the standard normal distribution. This variate is also called the standardized form of X {\textstyle X} .
Bartlett's test is sensitive to departures from normality. That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality. Levene's test and the Brown–Forsythe test are alternatives to the Bartlett test that are less sensitive to departures from normality. [3]
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]