Search results
Results from the WOW.Com Content Network
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
Derivation from linearized MHD equations [1] [2] [3]. In an ideal electrically conducting fluid with a homogeneous magnetic field B, the closed set of MHD equations consisting of the equation of motion, continuity equation, equation of state, and ideal induction equation (see Magnetohydrodynamics § Equations) linearized about a stationary equilibrium where the pressure p and density ρ are ...
Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves ( sound waves , for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).
is the pressure; is the velocity; The time evolution of this problem can be described by solving the Euler equations, which leads to three characteristics, describing the propagation speed of the various regions of the system. Namely the rarefaction wave, the contact discontinuity and the shock discontinuity.
In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point.These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states.
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...
Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.
The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below). The equations are derived [ 2 ] from depth-integrating the Navier–Stokes equations , in the case where the horizontal length scale is much greater than the vertical ...