Search results
Results from the WOW.Com Content Network
number of characters and number of bytes, respectively COBOL: string length string: a decimal string giving the number of characters Tcl: ≢ string: APL: string.len() Number of bytes Rust [30] string.chars().count() Number of Unicode code points Rust [31]
A character literal is a type of literal in programming for the representation of a single character's value within the source code of a computer program. Languages that have a dedicated character data type generally include character literals; these include C , C++ , Java , [ 1 ] and Visual Basic . [ 2 ]
A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the format &#nnnn; or &#xhhhh; where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form.
Some naming conventions limit whether letters may appear in uppercase or lowercase. Other conventions do not restrict letter case, but attach a well-defined interpretation based on letter case. Some naming conventions specify whether alphabetic, numeric, or alphanumeric characters may be used, and if so, in what sequence.
For example, in Python, raw strings are preceded by an r or R – compare 'C:\\Windows' with r'C:\Windows' (though, a Python raw string cannot end in an odd number of backslashes). Python 2 also distinguishes two types of strings: 8-bit ASCII ("bytes") strings (the default), explicitly indicated with a b or B prefix, and Unicode strings ...
This happens for example with UTF-8, where single codes (UCS code points) can take anywhere from one to four bytes, and single characters can take an arbitrary number of codes. In these cases, the logical length of the string (number of characters) differs from the physical length of the array (number of bytes in use).
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
With this it is possible to encode 128 (i.e. 2 7) unique values (0–127) to represent the alphabetic, numeric, and punctuation characters commonly used in English, plus a selection of Control characters which do not represent printable characters. For example, the capital letter A is represented in 7 bits as 100 0001 2, 0x41 (101 8) , the ...