enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    Gamma ray attenuation due to extragalactic light. Independent of the cosmic distance ladder and the cosmic microwave background. 2019-03-18 74.03 ± 1.42: Hubble Space Telescope [71] Precision HST photometry of Cepheids in the Large Magellanic Cloud (LMC) reduce the uncertainty in the distance to the LMC from 2.5% to 1.3%.

  3. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    This equation simply means that all test particles at a particular place and time will have the same acceleration, which is a well-known feature of Newtonian gravity. For example, everything floating around in the International Space Station will undergo roughly the same acceleration due to gravity.

  4. Precision approach path indicator - Wikipedia

    en.wikipedia.org/wiki/Precision_Approach_Path...

    It consists of two units with the inner unit located 10 metres (33 ft) from the runway edge. [1] The PAPI should be located on the left-hand side of the runway at right angles to the runway center line, although can be located on the right-hand side of the runway if required. The red lights are always on the side closest to the runway.

  5. Gravitational lens - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lens

    In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer's eye, just like an ordinary lens. In general relativity the path of light depends on the shape of space (i.e. the metric).

  6. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    Astronomers using the Hubble Space Telescope and the Very Large Telescope have made precise tests of general relativity on galactic scales. The nearby galaxy ESO 325-G004 acts as a strong gravitational lens, distorting light from a distant galaxy behind it to create an Einstein ring around its centre. By comparing the mass of ESO 325-G004 (from ...

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the normal Euclidean geometry, triangles obey the Pythagorean theorem, which states that the square distance ds 2 between two points in space is the sum of the squares of its perpendicular components = + + where dx, dy and dz represent the infinitesimal differences between the x, y and z coordinates of two points in a Cartesian coordinate ...

  8. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    A cosmological horizon is a measure of the distance from which one could possibly retrieve information. [1] This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a ...

  9. Shapiro time delay - Wikipedia

    en.wikipedia.org/wiki/Shapiro_time_delay

    The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.