Ad
related to: multiplying rational numberseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
Rational numbers together with addition and multiplication form a field which contains the integers, and is contained in any field containing the integers. In other words, the field of rational numbers is a prime field , and a field has characteristic zero if and only if it contains the rational numbers as a subfield.
A simple example is the set of non-zero rational numbers. Here identity 1 is had, as opposed to groups under addition where the identity is typically 0. Note that with the rationals, zero must be excluded because, under multiplication, it does not have an inverse: there is no rational number that can be multiplied by zero to result in 1.
Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers. [93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers.
The unit fractions are the rational numbers that can be written in the form , where can be any positive natural number. They are thus the multiplicative inverses of the positive integers. When something is divided into n {\displaystyle n} equal parts, each part is a 1 / n {\displaystyle 1/n} fraction of the whole.
To divide a number by a fraction, multiply that number by the reciprocal of that fraction. ... The field of rational numbers is the field of fractions of the integers
In mathematics, the notion of number has been extended over the centuries to include zero (0), [3] negative numbers, [4] rational numbers such as one half (), real numbers such as the square root of 2 and π, [5] and complex numbers [6] which extend the real numbers with a square root of −1 (and its combinations with real numbers by adding or ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Ad
related to: multiplying rational numberseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch