Search results
Results from the WOW.Com Content Network
Arc length is the distance between two points along a section of a curve. ... The last equality is proved by the following steps:
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...
Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...
Let tether length R = 160 yds. and silo radius r = R/(2 π) yds. The involute in the fourth quadrant is a nearly circular arc. One can imagine a circular segment with the same perimeter (arc length) would enclose nearly the same area; the radius and therefore the area of that segment could be readily computed.
The Cesàro equation is obtained as a relation between arc length and curvature. The equation of a circle (including a line) for example is given by the equation κ ( s ) = 1 r {\displaystyle \kappa (s)={\tfrac {1}{r}}} where s {\displaystyle s} is the arc length, κ {\displaystyle \kappa } the curvature and r {\displaystyle r} the radius of ...