enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    Lone pairs (shown as pairs of dots) in the Lewis structure of hydroxide. In science, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond [1] and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms.

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A water molecule has two pairs of bonded electrons and two unshared lone pairs. Tetrahedral: Tetra-signifies four, and -hedral relates to a face of a solid, so "tetrahedral" literally means "having four faces". This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs.

  4. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced by a lone pair of electrons, which is always in an equatorial position. This is true because the lone pair occupies more space near the central atom (A) than does a ...

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    The lone pairs on transition metal atoms are usually stereochemically inactive, meaning that their presence does not change the molecular geometry. For example, the hexaaquo complexes M(H 2 O) 6 are all octahedral for M = V 3+ , Mn 3+ , Co 3+ , Ni 2+ and Zn 2+ , despite the fact that the electronic configurations of the central metal ion are d ...

  6. Molecular configuration - Wikipedia

    en.wikipedia.org/wiki/Molecular_configuration

    The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different ...

  7. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Valence bond theory complements molecular orbital theory, which does not adhere to the valence bond idea that electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets of molecular orbitals which can extend over the entire molecule. Although both theories describe chemical bonding, molecular ...

  8. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    AX 2 E 1 molecules, such as SnCl 2, have only one lone pair and the central angle about 120° (the centre and two vertices of an equilateral triangle). They have three sp 2 orbitals. There exist also sd-hybridised AX 2 compounds of transition metals without lone pairs: they have the central angle about 90° and are also classified as bent.

  9. Square pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_molecular...

    If the ligand atoms were connected, the resulting shape would be that of a pyramid with a square base. The point group symmetry involved is of type C 4v. The geometry is common for certain main group compounds that have a stereochemically-active lone pair, as described by VSEPR theory.