Search results
Results from the WOW.Com Content Network
Lone pairs (shown as pairs of dots) in the Lewis structure of hydroxide. In science, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond [1] and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms.
A water molecule has two pairs of bonded electrons and two unshared lone pairs. Tetrahedral: Tetra-signifies four, and -hedral relates to a face of a solid, so "tetrahedral" literally means "having four faces". This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs.
An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced by a lone pair of electrons, which is always in an equatorial position. This is true because the lone pair occupies more space near the central atom (A) than does a ...
The lone pairs on transition metal atoms are usually stereochemically inactive, meaning that their presence does not change the molecular geometry. For example, the hexaaquo complexes M(H 2 O) 6 are all octahedral for M = V 3+ , Mn 3+ , Co 3+ , Ni 2+ and Zn 2+ , despite the fact that the electronic configurations of the central metal ion are d ...
The linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands) placed at a bond angle of 180°. Linear organic molecules , such as acetylene ( HC≡CH ), are often described by invoking sp orbital hybridization for their carbon centers.
AX 2 E 1 molecules, such as SnCl 2, have only one lone pair and the central angle about 120° (the centre and two vertices of an equilateral triangle). They have three sp 2 orbitals. There exist also sd-hybridised AX 2 compounds of transition metals without lone pairs: they have the central angle about 90° and are also classified as bent.
If the ligand atoms were connected, the resulting shape would be that of a pyramid with a square base. The point group symmetry involved is of type C 4v. The geometry is common for certain main group compounds that have a stereochemically-active lone pair, as described by VSEPR theory.
In the case of water, with its 104.5° HOH angle, the OH bonding orbitals are constructed from O(~sp 4.0) orbitals (~20% s, ~80% p), while the lone pairs consist of O(~sp 2.3) orbitals (~30% s, ~70% p). As discussed in the justification above, the lone pairs behave as very electropositive substituents and have excess s character.