Search results
Results from the WOW.Com Content Network
Text normalization is the process of transforming text into a single canonical form that it might not have had before. Normalizing text before storing or processing it allows for separation of concerns , since input is guaranteed to be consistent before operations are performed on it.
Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...
In computer science, canonicalization (sometimes standardization or normalization) is a process for converting data that has more than one possible representation into a "standard", "normal", or canonical form.
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f(z i), where f is a function.
For premium support please call: 800-290-4726 more ways to reach us
They are useful in the field of natural language processing and computational text analysis. [2] While the value of the cells is commonly the raw count of a given term, there are various schemes for weighting the raw counts such as row normalizing (i.e. relative frequency/proportions) and tf-idf.
In educational statistics, a normal curve equivalent (NCE), developed for the United States Department of Education by the RMC Research Corporation, [1] is a way of normalizing scores received on a test into a 0-100 scale similar to a percentile rank, but preserving the valuable equal-interval properties of a z-score.