Search results
Results from the WOW.Com Content Network
In Abbe's 1874 paper, titled "A Contribution to the Theory of the Microscope and the nature of Microscopic Vision", [12] Abbe states that the resolution of a microscope is inversely dependent on its aperture, but without proposing a formula for the resolution limit of a microscope.
According to Abbe's theory of image formation, developed in 1873, the resolving capability of an optical component is ultimately limited by the spreading out of each image point due to diffraction. Unless the aperture of the optical component is large enough to collect all the diffracted light, the finer aspects of the image will not correspond ...
Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = , where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).
When the imaging system obeys the Abbe sine condition, the ratio of the sines of these angles equal the (lateral absolute) magnification of the system. In optics , the Abbe sine condition is a condition that must be fulfilled by a lens or other optical system in order for it to produce sharp images of off-axis as well as on-axis objects.
The degree of spreading (blurring) in the image of a point object for an imaging system is a measure of the quality of the imaging system. In non-coherent imaging systems, such as fluorescent microscopes, telescopes or optical microscopes, the image formation process is linear in the image intensity and described by a linear system theory. This ...
The ratio of the height of the image to the height of the object is the magnification. The spatial extent of the image surface and the focal length of the lens determines the field of view of the lens. Image formation of mirror these have a center of curvature and its focal length of the mirror is half of the center of curvature.
An Abbe diagram, also called 'the glass veil', is produced by plotting the Abbe number of a material versus its refractive index . Glasses can then be categorised and selected according to their positions on the diagram.
A superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit.The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution depending on the illumination wavelength and the numerical aperture (NA) of the objective lens.