Search results
Results from the WOW.Com Content Network
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section.
The minimum possible diameter of Xiangliu, corresponding to an albedo of 1, is 36 km. [13] In order for Xiangliu's orbit to remain eccentric over a timescale comparable to the age of the Solar System, it must be less than 100 km (60 mi) in diameter, corresponding to an albedo greater than 0.2.
With the exoplanet sample known in 2009, a group of astronomers estimated that "(1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution" and "(3) planets with masses ...
HD 80606 b has the most eccentric orbit of any known planet after HD 20782 b.Its eccentricity is 0.9336, comparable to Halley's Comet.The eccentricity may be a result of the Kozai mechanism, which would occur if the planet's orbit is significantly inclined to that of the binary stars.
In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit. The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly .
However, the actual solution, assuming Newtonian physics, is an elliptical orbit (a Keplerian orbit). For these, it is easy to find the mean anomaly (and hence the time) for a given true anomaly (the angular position of the planet around the sun), by converting true anomaly f {\displaystyle f} to " eccentric anomaly ":
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Two bodies orbiting a common center of mass, indicated by the red plus. The larger body has a higher mass, and therefore a smaller orbit and a lower orbital velocity than its lower-mass companion. The binary mass function follows from Kepler's third law when the radial velocity of one binary component is known. [1]