Search results
Results from the WOW.Com Content Network
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
For example, the photons emitted by a radio station broadcast at the frequency ν = 100 MHz, have an energy content of νh = (1 × 10 8) × (6.6 × 10 −34) = 6.6 × 10 −26 J, where h is the Planck constant. The wavelength of the station is λ = c/ν = 3 m, so that λ/(2π) = 48 cm and the volume is 0.109 m 3.
If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c , would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on ...
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
This is a list of sources of light, the visible part of the electromagnetic spectrum.Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic energy, and include light bulbs and stars like the Sun. Reflectors (such as the moon, cat's eyes, and mirrors) do not actually produce the light that ...
Another example is incandescent light bulbs, which emit only around 10% of their energy as visible light and the remainder as infrared. A common thermal light source in history is the glowing solid particles in flames , but these also emit most of their radiation in the infrared and only a fraction in the visible spectrum.
The photons of a light beam have a characteristic energy, called photon energy, which is proportional to the frequency of the light.In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its binding energy, it is likely to be ejected.
The energy of an individual photon is quantized and proportional to frequency according to Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is the Planck constant. Thus, higher frequency photons have more energy.