Search results
Results from the WOW.Com Content Network
The nucleus was discovered in 1911, as a result of Ernest Rutherford's efforts to test Thomson's "plum pudding model" of the atom. [10] The electron had already been discovered by J. J. Thomson. Knowing that atoms are electrically neutral, J. J. Thomson postulated that there must be a positive charge as well.
Thomson in 1897 was the first to suggest that one of the fundamental units of the atom was more than 1,000 times smaller than an atom, suggesting the subatomic particle now known as the electron. Thomson discovered this through his explorations on the properties of cathode rays.
Electron discovered by J. J. Thomson [4] 1899 Alpha particle discovered by Ernest Rutherford in uranium radiation [5] 1900 Gamma ray (a high-energy photon) discovered by Paul Villard in uranium decay [6] 1911 Atomic nucleus identified by Ernest Rutherford, based on scattering observed by Hans Geiger and Ernest Marsden [7] 1919
Almost a century later, Joseph John Thomson, a fellow Mancunian working the University of Cambridge in 1897, discovered the electron, proving that the atom had smaller constituent parts.
A schematic of the nucleus of an atom indicating β − radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, a red sphere was a proton with positive charge, and a blue sphere was a proton tightly bound to an electron, with no net charge.
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge. Diagram is not to scale; in reality the nucleus is vastly smaller than the electron shell.
The two discovering parties independently assign the discovered meson two different symbols, J and ψ; thus, it becomes formally known as the J/ψ meson. The discovery finally convinces the physics community of the quark model's validity. 1974 Robert J. Buenker and Sigrid D. Peyerimhoff introduce the multireference configuration interaction method.