Search results
Results from the WOW.Com Content Network
A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. [1]
[1] [2] [3] In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. [4] [5] Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.
Projected coordinate system (or planar, grid) Layout of a UTM coordinate system. A standardized cartesian coordinate system that models the Earth (or more commonly, a large region thereof) as a plane, measuring locations from an arbitrary origin point along x and y axes more or less aligned with the cardinal directions.
The U.S. National Geodetic Survey's "State Plane Coordinate System of 1983" uses the Lambert conformal conic projection to define the grid-coordinate systems used in several states, primarily those that are elongated west to east such as Tennessee.
Given that every projection gives deformations, each country's needs are different in order to reduce these distortions. These national projections, or national Coordinate Reference Systems are officially announced by the relevant national agencies. The list below is a collection of available official national projected Coordinate Reference ...
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
Formulas for the Web Mercator are fundamentally the same as for the standard spherical Mercator, but before applying zoom, the "world coordinates" are adjusted such that the upper left corner is (0, 0) and the lower right corner is ( , ): [7] = ⌊ (+) ⌋ = ⌊ ( [ (+)]) ⌋ where is the longitude in radians and is geodetic latitude in radians.
The projection coordinates resulting from the various developments of the ellipsoidal transverse Mercator are Cartesian coordinates such that the central meridian corresponds to the x axis and the equator corresponds to the y axis. Both x and y are defined for all values of λ and ϕ. The projection does not define a grid: the grid is an ...