Search results
Results from the WOW.Com Content Network
Dusts also have upper and lower explosion limits, though the upper limits are hard to measure and of little practical importance. Lower flammability limits for many organic materials are in the range of 10–50 g/m 3, which is much higher than the limits set for health reasons, as is the case for the LEL of many gases and vapours. Dust clouds ...
The lower flammability limit or lower explosive limit (LFL/LEL) represents the lowest air to fuel vapor concentration required for combustion to take place when ignited by an external source, for any particular chemical. [29] Any concentration lower than this could not produce a flame or result in combustion.
The lower flammability limit (LFL), [1] usually expressed in volume per cent, is the lower end of the concentration range over which a flammable mixture of gas or vapour in air can be ignited at a given temperature and pressure. The flammability range is delineated by the upper and lower flammability limits. Outside this range of air/vapor ...
A certain concentration of a flammable or combustible vapor is necessary to sustain combustion in air, the lower flammable limit, and that concentration is specific to each flammable or combustible liquid. The flash point is the lowest temperature at which there will be enough flammable vapor to support combustion when an ignition source is ...
Flammability limit Flammability limits, also called flammable limits, give the proportion of combustible gases in a mixture, between which limits this mixture is flammable. Flash point The flash point of a flammable liquid is the lowest temperature at which it can form an ignitable mixture in air. Float valve
For instance, to safely fill a new container or a pressure vessel with flammable gases, the atmosphere of normal air (containing 20.9 volume percent of oxygen) in the vessel would first be flushed (purged) with nitrogen or another non-flammable inert gas, thereby reducing the oxygen concentration inside the container. When the oxygen ...
In order to properly inert or purge, the flammability limits must be taken into account, and hydrogen's are very different from other kinds of gases. At normal atmospheric pressure it is 4% to 75%, based on the volume percent of hydrogen in oxygen it is 4% to 94%, while the limits of the detonation potential of hydrogen in air are 18.3% to 59% ...
A small amount of fuel in a tank is more dangerous than a large amount, since it takes less heat to raise the temperature of the remaining fuel. This causes the ullage fuel-to-air ratio to increase and exceed the lower flammability limit. A small amount of fuel in the tank leaves pumps on the floor of the tank exposed to the air-fuel mixture ...