Search results
Results from the WOW.Com Content Network
A flagellum (/ f l ə ˈ dʒ ɛ l əm /; pl.: flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores , and from a wide range of microorganisms to provide motility.
Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).
In regards to function, flagella play a significant role in the excretory nature of solenocytes. These motile appendages extend from the solenocyte membrane and utilize the support of an axial filament (or axoneme), basal body, as well as numerous microtubules. [6] That said, the stability of the flagellum is crucial to its motility.
By cooperatively moving their flagella, choanocytes filter particles out of the water and into the spongocoel, and out through the osculum.This improves both respiratory and digestive functions for the sponge, pulling in oxygen and nutrients and allowing a rapid expulsion of carbon dioxide and other waste products.
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
The non-membrane bounded organelles, also called large biomolecular complexes, are large assemblies of macromolecules that carry out particular and specialized functions, but they lack membrane boundaries. Many of these are referred to as "proteinaceous organelles" as their main structure is made of proteins. Such cell structures include:
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface. The structure of flagellin is responsible for the helical shape of the flagellar filament, which is important for its proper function. [4] It is transported through the center of the filament to the tip where it polymerases spontaneously into a part of the ...
The evolution of flagella is of great interest to biologists because the three known varieties of flagella – (eukaryotic, bacterial, and archaeal) each represent a sophisticated cellular structure that requires the interaction of many different systems.