Search results
Results from the WOW.Com Content Network
In most cases the formula representing a formula unit will also be an empirical formula, such as calcium carbonate (CaCO 3) or sodium chloride (NaCl), but it is not always the case. For example, the ionic compounds potassium persulfate ( K 2 S 2 O 8 ), mercury(I) nitrate Hg 2 (NO 3 ) 2 , and sodium peroxide Na 2 O 2 , have empirical formulas of ...
The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds , when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts .
For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small percentage of the ions are paired and count as a single particle.
In chemistry, the empirical formula of a chemical compound is the simplest whole number ratio of atoms present in a compound. [1] A simple example of this concept is that the empirical formula of sulfur monoxide , or SO, is simply SO, as is the empirical formula of disulfur dioxide , S 2 O 2 .
The molecular mass (for molecular compounds) and formula mass (for non-molecular compounds, such as ionic salts) are commonly used as synonyms of molar mass, differing only in units (daltons vs g/mol); however, the most authoritative sources define it differently. The difference is that molecular mass is the mass of one specific particle or ...
A chemical formula used for a series of compounds that differ from each other by a constant unit is called a general formula. It generates a homologous series of chemical formulae. For example, alcohols may be represented by the formula C n H 2n + 1 OH (n ≥ 1), giving the homologs methanol, ethanol, propanol for 1 ≤ n ≤ 3.
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
This extends the scope of the ionic model well beyond compounds in which the bonding would normally be considered as "ionic". For example, methane, CH 4, obeys the conditions for the ionic model with carbon as the cation and hydrogen as the anion (or vice versa, since carbon and hydrogen have the same electronegativity).