Search results
Results from the WOW.Com Content Network
Arrays are used to implement mathematical vectors and matrices, as well as other kinds of rectangular tables. Many databases, small and large, consist of (or include) one-dimensional arrays whose elements are records. Arrays are used to implement other data structures, such as lists, heaps, hash tables, deques, queues, stacks, strings, and
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
A two-dimensional array stored as a one-dimensional array of one-dimensional arrays (rows) Many languages support only one-dimensional arrays. In those languages, a multi-dimensional array is typically represented by an Iliffe vector, a one-dimensional array of references to arrays of one dimension less. A two-dimensional array, in particular ...
Adding vectors is done mod q. For example, binary codes are added mod 2 (which equivalent to bit-wise XOR addition). For example, in , 11000 + 11011 = 00011. That selecting different coset leaders will create a slightly different but equivalent standard array, and will not affect results when decoding.
With column-major order, a "matrix × vector" multiply can be implemented with vectorized multiply-add operations, if the vector's components are broadcast to each SIMD lane. It is also easy to access the basis vectors represented by a transformation matrix as individual column vectors, as these are contiguous in memory.
It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.