Search results
Results from the WOW.Com Content Network
Nash proved that if mixed strategies (where a player chooses probabilities of using various pure strategies) are allowed, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium, which might be a pure strategy for each player or might be a probability ...
It would take approximately 21 k-levels to reach 0, the Nash equilibrium of the game. The guessing game depends on three elements: (1) the subject's perceptions of the level 0 would play; (2) the subject's expectations about the cognitive level of other players; and (3) the number of in-game reasoning steps that the subject is capable of ...
Strategies per player: In a game each player chooses from a set of possible actions, known as pure strategies. If the number is the same for all players, it is listed here. Number of pure strategy Nash equilibria: A Nash equilibrium is a set of strategies which represents mutual best responses to the other strategies. In other words, if every ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
The Lemke–Howson algorithm is an algorithm that computes a Nash equilibrium of a bimatrix game, named after its inventors, Carlton E. Lemke and J. T. Howson. [1] It is said to be "the best known among the combinatorial algorithms for finding a Nash equilibrium", [2] although more recently the Porter-Nudelman-Shoham algorithm [3] has outperformed on a number of benchmarks.
Strict stationary equilibria: [6] A Nash equilibrium is called strict if each player strictly prefers the infinite sequence of outcomes attained in equilibrium, over any other sequence he can deviate to. A Nash equilibrium is called stationary if the outcome is the same in each time-period. An outcome is attainable in strict-stationary ...
A payoff function for a player is a mapping from the cross-product of players' strategy spaces to that player's set of payoffs (normally the set of real numbers, where the number represents a cardinal or ordinal utility—often cardinal in the normal-form representation) of a player, i.e. the payoff function of a player takes as its input a ...