Search results
Results from the WOW.Com Content Network
Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function = , then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25).
Functions that have inverse functions are said to be invertible. A function is invertible if and only if it is a bijection. A function is invertible if and only if it is a bijection. Stated in concise mathematical notation, a function f : X → Y is bijective if and only if it satisfies the condition
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
An homomorphism of algebraic structures is an isomorphism if and only if it is a bijection. The inverse of a bijection is called an inverse function. In the other cases, one talks of inverse isomorphisms. A function has a left inverse or a right inverse if and only it is injective or surjective, respectively. An homomorphism of algebraic ...
Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution , so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations ...