Search results
Results from the WOW.Com Content Network
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test). A typical example of the repeated measures t-test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again ...
Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like regression. [1] Number of samples: The number of samples of data. Exactness: A test can be exact or be asymptotic delivering approximate ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2] For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples").
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
the value of T can be compared with its expected value under the null hypothesis of 50, and since the sample size is large, a normal distribution can be used as an approximation to the sampling distribution either for T or for the revised test statistic T−50. Using one of these sampling distributions, it is possible to compute either a one ...