Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
It is mostly used for numerical analysis, computational science, and machine learning. [6] C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects, simplifying the process for existing software using the .NET platform.
Aside from their empirical performance, activation functions also have different mathematical properties: Nonlinear When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6]
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
The use of multiple machine learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. [170] [171] [172] epoch In machine learning, particularly in the creation of artificial neural networks, an epoch is training the model for one cycle through the full training ...
This is a chronological table of metaheuristic algorithms that only contains fundamental computational intelligence algorithms. Hybrid algorithms and multi-objective algorithms are not listed in the table below.