enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3). Thus every rotation can be represented uniquely by an orthogonal matrix with unit determinant.

  3. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted SO(n). It consists of all orthogonal matrices of determinant 1.

  4. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The set of n × n orthogonal matrices, under multiplication, forms the group O(n), known as the orthogonal group. The subgroup SO(n) consisting of orthogonal matrices with determinant +1 is called the special orthogonal group, and each of its elements is a special orthogonal matrix. As a linear transformation, every special orthogonal matrix ...

  5. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  6. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    In mathematics, the special orthogonal group in three dimensions, otherwise known as the rotation group SO(3), is a naturally occurring example of a manifold.The various charts on SO(3) set up rival coordinate systems: in this case there cannot be said to be a preferred set of parameters describing a rotation.

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    Then, any orthogonal matrix is either a rotation or an improper rotation. A general orthogonal matrix has only one real eigenvalue, either +1 or −1. When it is +1 the matrix is a rotation. When −1, the matrix is an improper rotation. If R has more than one invariant vector then φ = 0 and R = I. Any vector is an invariant vector of I.