Search results
Results from the WOW.Com Content Network
A coefficient of utilization (CU) is a measure of the efficiency of a luminaire in transferring luminous energy to the working plane in a particular area. The CU is the ratio of luminous flux from a luminaire incident upon a work plane to that emitted by the lamps within the luminaire. As a ratio, the coefficient of utilization is unitless.
The effective reflectance of ceiling, floor, and walls are estimated from tabular data. A coefficient of utilization, representing the fraction of light that is directed to the working plane, is supplied by manufacturers for each luminaire design for the various calculated room cavity ratios.
Luminous efficacy can be normalized by the maximum possible luminous efficacy to a dimensionless quantity called luminous efficiency.The distinction between efficacy and efficiency is not always carefully maintained in published sources, so it is not uncommon to see "efficiencies" expressed in lumens per watt, or "efficacies" expressed as a percentage.
Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.
The standard luminous efficiency function is normalized to a peak value of unity at 555 nm (see luminous coefficient). The value of the constant in front of the integral is usually rounded off to 683 lm/W. The small excess fractional value comes from the slight mismatch between the definition of the lumen and the peak of the luminosity function.
Utilization factor (solid line) with blade-to-gas speed ratio. The utilization factor or use factor is the ratio of the time that a piece of equipment is in use to the total time that it could be in use. It is often averaged over time in the definition such that the ratio becomes the amount of energy used divided by the maximum possible to be used.
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
In photometry, luminous energy is the perceived energy of light.This is sometimes called the quantity of light. [1] Luminous energy is not the same as radiant energy, the corresponding objective physical quantity.