Search results
Results from the WOW.Com Content Network
The cochlea (pl.: cochleae) is a spiraled, hollow, conical chamber of bone, in which waves propagate from the base (near the middle ear and the oval window) to the apex (the top or center of the spiral).
The second mechanism is a non-linear active mechanism, which is primarily dependent on the functioning of the OHCs, and also the general physiological condition of the cochlea itself. The base and apex of the basilar membrane differ in stiffness and width, which cause the basilar membrane to respond to varying frequencies differently along its ...
The basilar membrane is widest (0.42–0.65 mm) and least stiff at the apex of the cochlea, and narrowest (0.08–0.16 mm) and stiffest at the base (near the round and oval windows). [3] High-frequency sounds localize near the base of the cochlea, while low-frequency sounds localize near the apex.
At the cochlear base the BM is at its narrowest and most stiff (high-frequencies), while at the cochlear apex it is at its widest and least stiff (low-frequencies). The tectorial membrane (TM) helps facilitate cochlear amplification by stimulating OHC (direct) and IHC (via endolymph vibrations). TM width and stiffness parallels BM's and ...
The cochlea is tonotopically mapped in a spiral fashion, with lower frequencies localizing at the apex of the cochlea, and high frequencies at the base of the cochlea, near the oval and round windows. With age, comes a loss in distinction of frequencies, especially higher ones.
The base of the cochlea, closest to the outer ear, is the most stiff and narrow and is where the high-frequency sounds are transduced. The apex, or top, of the cochlea is wider and much more flexible and loose and functions as the transduction site for low-frequency sounds. [7]
The cochlear cupula is a structure in the cochlea.It is the apex of the cochlea. The bony canal of the cochlea takes two and three-quarter turns around the modiolus.The modiolus is about 35 mm in length, and diminishes gradually in diameter from the base to the summit, where it terminates in the cupula.
For example, lower frequencies mostly stimulate the apex, in comparison to higher frequencies, which stimulate the base of the cochlea. This attribute of the physiology of the basilar membrane can be illustrated in the form of a place–frequency map: [12] Simplified schematic of the basilar membrane, showing the change in characteristic ...