Search results
Results from the WOW.Com Content Network
First-order phase transitions exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable. [6] The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of the free ...
Transition state structures can be determined by searching for first-order saddle points on the potential energy surface (PES) of the chemical species of interest. [4] A first-order saddle point is a critical point of index one, that is, a position on the PES corresponding to a minimum in all directions except one.
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
However, in some cases the enthalpy and entropy do change dramatically with temperature. A first-order approximation is to assume that the two different reaction products have different heat capacities. Incorporating this assumption yields an additional term c / T 2 in the expression for the equilibrium constant as a function of ...
[A] can provide intuitive insight about the order of each of the reagents. If plots of v / [A] vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of v / [B] vs. [A]; overlay is consistent with a first-order dependence on [B].
Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena. [1] The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoya, Milan Randić and Nenad Trinajstić [2] (also Harry Wiener and others). In 1988, it was ...
Although the net formula for decomposition or isomerization appears to be unimolecular and suggests first-order kinetics in the reactant, the Lindemann mechanism shows that the unimolecular reaction step is preceded by a bimolecular activation step so that the kinetics may actually be second-order in certain cases. [7]
For first order desorption, the activation energy is estimated from the temperature (T p) at which the desorption rate is a maximum. Using the equation for rate of desorption (Polyani Winer equation), one can find T p , and Redhead shows that the relationship between T p and E can be approximated to be linear, given that the ratio of the rate ...