Search results
Results from the WOW.Com Content Network
A wave function for a single electron on 5d atomic orbital of a hydrogen atom. The solid body shows the places where the electron's probability density is above a certain value (here 0.02 nm −3): this is calculated from the probability amplitude. The hue on the colored surface shows the complex phase of the wave function.
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...
The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case. For waves on a string, or in a medium such as water, the amplitude is a displacement.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron.
For a monochromatic propagating electromagnetic wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave, travelling in a non-magnetic material, is given by: = | |, and the local intensity is obtained by multiplying this expression by the wave velocity
where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular frequency of the wave, and v p is the phase velocity of the wave. The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation.