Search results
Results from the WOW.Com Content Network
Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C. Water electrolysis requires a minimum potential difference of 1.23 volts , although at that voltage external heat is also required.
Thus, the volumes of hydrogen and oxygen which combine (i.e., 100mL and 50mL) bear a simple ratio of 2:1, as also is the case for the ratio of product water vapor to reactant oxygen. Based on Gay-Lussac's results, Amedeo Avogadro hypothesized in 1811 that, at the same temperature and pressure, equal volumes of gases (of whatever kind) contain ...
In thermolysis, water molecules split into hydrogen and oxygen. For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 ...
Combustion of hydrogen with the oxygen in the air. When the bottom cap is removed, allowing air to enter at the bottom, the hydrogen in the container rises out of top and burns as it mixes with the air. Space Shuttle Main Engine burning hydrogen with oxygen, produces a nearly invisible flame at full thrust. Hydrogen gas is highly flammable:
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen and CO 2 greenhouse gas that may be captured with CCS. Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly, natural gas is the feedstock.
The addition of hydrogen to double or triple bonds in hydrocarbons is a type of redox reaction that can be thermodynamically favorable. For example, the addition of hydrogen to ethene has a Gibbs free energy change of -101 kJ·mol −1 , which is highly exothermic . [ 11 ]
The sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.