Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
In differential geometry, the use of dimensionless parameters is evident in geometric relationships and transformations. Physics relies on dimensionless numbers like the Reynolds number in fluid dynamics, [6] the fine-structure constant in quantum mechanics, [7] and the Lorentz factor in relativity. [8] In chemistry, state properties and ratios ...
Download as PDF; Printable version; ... Countable quantities (1 C, 4 P) ... Dimensionless quantity * List of dimensionless quantities; D.
For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.
siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar ...
In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.
A meaningful test on the time-variation of G would require comparison with a non-gravitational force to obtain a dimensionless quantity, e.g. through the ratio of the gravitational force to the electrostatic force between two electrons, which in turn is related to the dimensionless fine-structure constant.
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.