enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. En papillote - Wikipedia

    en.wikipedia.org/wiki/En_papillote

    En papillote (French pronunciation: [ɑ̃ papijɔt]; French for "enveloped in paper" [1]), or al cartoccio in Italian, is a method of cooking in which the food is put into a folded pouch or parcel and then baked. This method is most often used to cook fish or vegetables, but lamb and poultry can also be cooked en papillote.

  3. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    With each fold a certain amount of paper is lost to potential folding. The loss function for folding paper in half in a single direction was given to be L = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , where L is the minimum length of the paper (or other material), t is the material's thickness, and ...

  4. Fold-and-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Fold-and-cut_theorem

    The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).

  5. Kawasaki's theorem - Wikipedia

    en.wikipedia.org/wiki/Kawasaki's_theorem

    For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable for hinged panels of rigid material rather than flexible paper), the condition of Kawasaki's theorem turns out to be sufficient for a single-vertex crease pattern to move from an unfolded state to a flat-folded state.

  6. Huzita–Hatori axioms - Wikipedia

    en.wikipedia.org/wiki/Huzita–Hatori_axioms

    The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.

  7. Maekawa's theorem - Wikipedia

    en.wikipedia.org/wiki/Maekawa's_theorem

    Maekawa's theorem is a theorem in the mathematics of paper folding named after Jun Maekawa. It relates to flat-foldable origami crease patterns and states that at every vertex, the numbers of valley and mountain folds always differ by two in either direction. [1] The same result was also discovered by Jacques Justin [2] and, even earlier, by S ...

  8. Map folding - Wikipedia

    en.wikipedia.org/wiki/Map_folding

    In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases ...

  9. Geometric Origami - Wikipedia

    en.wikipedia.org/wiki/Geometric_Origami

    Geometric Origami is a book on the mathematics of paper folding, focusing on the ability to simulate and extend classical straightedge and compass constructions using origami. It was written by Austrian mathematician Robert Geretschläger [ de ] and published by Arbelos Publishing (Shipley, UK) in 2008.